Multiple foliation development during thrusting and synchronous formation of vertical shear zones

T. H. Bell, J. Reinhardt* and R. L. Hammond
Department of Geology, James Cook University, Townsville, Queensland 4811, Australia

(Received 3 June 1991; accepted in revised form 12 March 1992)

Abstract

Three orthogonal foliations developed during large-scale N-S thrusting in the central portion of the Mount Isa Block, Australia. Two of these foliations, which are well preserved in their original orientations in porphyroblasts of pelitic schists but considerably affected and commonly destroyed in the schist matrix due to the effects of subsequent deformation and metamorphism, formed synchronously and have a common stretching lineation, which is near-horizontal and trends N-S. One foliation formed near-horizontal and the other nearvertical, striking N-S. Both developed during N-S-directed thrusting, with the N-S vertical foliation accommodating sinistral differential displacement between the thrust belt to the west and that to the east. The third foliation which dips steeply to the north and strikes $\mathrm{E}-\mathrm{W}$, formed during $\mathrm{N}-\mathrm{S}$ shortening of the thrust belt and tends to overprint the other foliations formed in the same orogeny.

The N-S vertical foliation is well preserved within a narrow belt of gneissic rocks (called the Wonga-Duchess Belt) that also locally contains the subsequently folded remains of the foliation that formed near-horizontal. This belt separates multiply thrust-repeated beds to the west from large-scale, apparently less repetitive thrusts to the east. The direction of thrusting appears to change across this belt from N to S on the west to S to N on the east. The differential deformation to either side of the belt was taken up by sinistral shear along this belt. Numerous related, but smaller-scale vertical shear zones occur up to 3 km away to either side of this narrow zone. The primary vertical foliation within the Wonga-Duchess Belt appears to have formed during transform-like faulting by progressive inhomogeneous simple shear with no component of orthogonal shortening.

INTRODUCTION

Within the Mount Isa Block in north-eastern Australia lies a $3-4 \mathrm{~km}$ wide belt extending at least $140 \mathrm{~km} \mathrm{~N}-\mathrm{S}$ (Fig. 1), which contains an intensely developed, nearvertically dipping, N-S-striking foliation as well as the folded remains of a formerly shallowly dipping foliation. This belt, called the Wonga-Duchess Belt, forms a structural high relative to the adjacent metavolcanic and metasedimentary rocks (Tewinga Group, Mary Kathleen Group) in the synclines on either side. The core of the Wonga-Duchess Belt consists largely of gneissic granitoids and subordinate metadolerites.

What has puzzled geologists for some time is the presence of two elongation lineations developed in the main, near-vertically dipping foliation plane (cf. Holcombe \& Fraser 1979, "Shinfield Zone" of Passchier 1986). One of these lineations is consistently oriented and plunges down the dip of the foliation, whereas the other varies from horizontal to steeply plunging to either side of the down-dip lineation. The variably oriented lineation was regarded by Holcombe \& Fraser (1979) as an old intersection lineation. However, our work, and further work by Holcombe et al. (1991) has shown that this lineation, depending on whether or not the rocks contain a pre-existing foliation, is either a combined intersection lineation and stretching lineation, or just a stretching lineation (the latter being the case in many granite gneisses), which have been overprinted by a younger deformation.

[^0]The geology changes across the Wonga-Duchess Belt with multiple repeats of stratigraphic units to the west (Fig. 1) resulting from N to S thrusting (Bell 1983, 1991, Loosveld \& Schreurs 1987) and fewer, larger-scale thrusts occurring to the east (Bell unpublished report). The Wonga-Duchess Belt could therefore be a major ductile tear fault (cf. Dahlstrom 1970) accommodating differential lateral transport of thrust sheets to either side. As Loosveld (1989) presented evidence for northerly directed thrust movement in the eastern Mount Isa Block, the Wonga-Duchess Belt could also be a transform-fault-like structure with opposite directions of thrusting on either side.

Recognition of the timing and significance of the N-Sstriking, near-vertical foliation and the early-formed lineation is complicated by the presence of a younger regional deformation, D_{2}, the axial planes of which are also oriented N-S (Bell 1983, 1991, Winsor 1986, Reinhardt 1992, in press). In general, deformation and metamorphism during D_{2} appears to have erased most of the D_{1} microstructures in the rocks outside the WongaDuchess Belt, except within porphyroblasts that grew early in D_{2}, or in zones of low strain during D_{2}, such as hinges of D_{2} folds.

Obliteration of early developed foliations during subsequent deformation is a major problem in orogenic belts because it inhibits the unravelling of the deformation history (e.g. Bell 1986, Bell \& Johnson 1989, Johnson 1990a, b). However, overgrowth of early foliations by porphyroblastic minerals commonly appears to preserve these fabrics in the orientations in which they formed provided subsequent deformation is ductile (e.g. Fyson 1980, Bell 1985, Hayward 1990, Johnson

Fig. 1. Interpretative map of the central Mount Isa Block showing the change in geometry of major thrusts across the Wonga-Duchess Belt. Seven major thrust sheets (A-G) are present to the west of the Wonga-Duchess Belt, whereas only one major thrust sheet is apparent to the east. R, Rosebud Syncline (area covered by Fig. 2).

1990a,b). Thus, the study of porphyroblast inclusions is one of the most useful methods of deciphering the structural-metamorphic histories of polydeformed terrains. Abundant porphyroblasts containing pristine D_{1} inclusion trails occur in amphibolite-grade pelitic rocks adjacent to the Wonga-Duchess Belt (Reinhardt \& Rubenach 1989). We investigated these internal foliations in conjunction with mesoscopic structural relationships to see if they shed light on the origin of the foliation-lineation relationships and the macrostructure.

STRUCTURAL HISTORY

The structural history of the western and central Mount Isa Inlier involves three major contractional deformation phases which affected the Mid-Proterozoic cover sequences. Local patches of previously deformed and metamorphosed basement are also preserved (Page \& Blake 1988). The deformations of the cover sequences have been dated west of Mount Isa within the Sybella Granite using $\mathrm{Rb}-\mathrm{Sr}$ whole-rock techniques combined with $\mathrm{U}-\mathrm{Pb}$ on zircon for a control on the emplacement age (Page \& Bell 1986). The first deformation, $D_{1}(1610$ Ma), produced thrusts and locally a pervasive, shallowly dipping foliation during $\mathrm{N}-\mathrm{S}$ shortening (Bell 1983, 1991). The structural character of these thrusts varies from knife-sharp contacts to foliated breccias to mylonitic gneisses depending on location within the tectonic pile (e.g. Bell 1991).

The second deformation D_{2} (1545 Ma) produced regional folds about steeply dipping, N -S-oriented axial planes, and a generally well developed schistosity S_{2} with a near-vertical mineral elongation lineation L_{2}^{2} during E-W shortening (e.g. Winsor 1986, Holcombe et al. 1991, Reinhardt 1992, in press). The third, D_{3} (1515 Ma) produced local, generally small-scale folds and crenulations about NNW-SSE-oriented axial planes (Winsor 1986, Bell 1991, Reinhardt in press). In the central part of the Mount Isa Block, the main regional metamorphism occurred during D_{2}, reaching about 600$650^{\circ} \mathrm{C}$ and 4 kbar (Reinhardt \& Rubenach 1989, Reinhardt 1992, in press, N.H.S. Oliver personal communication).

To the west of the Wonga-Duchess Belt, the presence of D_{1} thrust sheets is evident from the multiple repetition of stratigraphic units (Fig. 1) (cf. Bell 1983, 1991, Loosveld \& Schreurs 1987). Immediately adjacent to the Wonga-Duchess Belt, the macroscale, pre- D_{2} structures become very complex. Within the Rosebud Syncline, small-scale thrusts and near-vertical shear zones are common and can still be recognized despite the strong D_{2} overprint (Fig. 2). However, only few of the D_{1} thrusts visible on the western side of the map are folded about the large-scale D_{2} Rosebud Syncline such that they re-appear on the eastern limb. The remainder converge to the east with near-vertical shear zones that dominate the structure on the eastern limb (Figs. 2 and 3). The Wonga-Duchess Belt cuts the eastern edge of

Fig. 2. Map of the structural relationships in the Rosebud Syncline (from Reinhardt 1987) and the immediately adjacent Wonga-Duchess Belt. Note the cessation of thrusts against near-vertical $\mathrm{N}-\mathrm{S}$ shear zones in the hinge region and on the eastern limb. The location marked A is where the photograph shown in Fig. 6(c) comes from. Corella Formation (calc-silicate rocks, calcareous schists, marble, metapelitic schists) and Ballara Quartzite constitute the Mary Kathleen Group; the underlying Argylla Formation (felsic metavolcanics) forms the uppermost member of the Tewinga Group.

Fig. 3. Cross-section across the Rosebud Syncline along the line indicated in Fig. 2. Note the cessation of thrusts from the western limb of the syncline against steep shear zones along the eastern limb. Vertical scale $=$ horizontal scale.
this area with the same geometry as these smaller-scale shear zones, truncating the larger-scale thrusts (Fig. 1). These geometrical relationships suggest that each of the near-vertical shear zones accommodated differential horizontal displacement to either side during thrusting. Differential lateral movement is also indicated by the presence of ramps in the western limb of the Rosebud Syncline which have no counterparts at the equivalent stratigraphic level on the eastern limb (Fig. 2).

The synchroneity of thrusts and near-vertical shear zones is strongly supported by zircon $\mathrm{U}-\mathrm{Pb}$ and wholerock $\mathrm{Rb}-\mathrm{Sr}$ ages obtained from gneissic granitoids within the Wonga-Duchess Belt, containing a nearvertical $\mathrm{N}-\mathrm{S}$-striking foliation (hereafter referred to as $S_{1 \mathrm{v}}$). The Wonga metagranite has SHRIMP ionmicroprobe $\mathrm{U}-\mathrm{Pb}$ ages from zircons in the range $1730-$ 1760 Ma (Page 1990) suggesting this was the age of emplacement. However, $\mathrm{Rb}-\mathrm{Sr}$ whole-rock ages from these sites range from 1621 to 1629 Ma (Page 1978). The $S_{1 v}$ at these dating sites contains a well-developed stretching lineation (L_{1}^{1}) which varies in orientation through the horizontal along the length of the WongaDuchess Belt, about a generally very weak down-dip stretching lineation. The $1621-1629 \mathrm{Ma} \mathrm{Rb}-\mathrm{Sr}$ wholerock ages of this near-vertical foliation correlate with the regional D_{1}, suggesting that the $\mathrm{Rb}-\mathrm{Sr}$ ratios have not been reset by the younger $1545 \mathrm{Ma} D_{2}$ event with the steep stretching lineation $\left(L_{2}^{2}\right)$. Hence, within those gneisses that were dated, the effects of this younger deformation have not been significant, contradicting the interpretation of Holcombe et al. (1991) that all the steeply dipping foliation is a product of isoclinal folding of a previous flat-lying foliation ($S_{1 \mathrm{~h}}$, see also below) during the regional D_{2}. An intense deformation associated with isoclinical folding during D_{2} would have reset the $\mathrm{Rb}-\mathrm{Sr}$ whole-rock ages in these granitic gneisses to the D_{2} age based on the results of Page \& Bell (1986) from the Sybella Granite to the west (e.g. Black et al. 1979). We therefore conclude that the near-vertical foliation in the gneisses of the Wonga-Duchess Belt originated as a near-vertical D_{1} structure which now shows a relatively weak D_{2} overprint on the same S surface (' $S_{1 v, 2}$ ').

Between the Rosebud Syncline and the Wonga-

Duchess Belt, variable intensity of S_{2} development in different rock types and the pervasive metamorphic overprint make it difficult to detect the presence of D_{1} shear zones, unless they cut and displace lithological boundaries in a disruptive fashion (Fig. 2). Since S_{2} has the same orientation as the $S_{1 v}$ foliation in these zones, the orientation of the stretching lineation is critical for distinguishing between these two foliations.

STRETCHING LINEATION VARIATION BETWEEN $S_{1 \mathrm{~h}}, S_{1 \mathrm{v}}$ AND S_{2}

To the west of the Wonga-Duchess Belt, D_{1} thrusting was directed $\mathrm{N}-\mathrm{S}$. This is based on the $\mathrm{N}-\mathrm{S}$ orientation of D_{1} stretching lineations preserved in regions of nearhorizontal S_{0} and near-horizontal mylonitic foliation $\left(S_{1 \mathrm{~h}}\right)$ in both broad and tight hinges of D_{2} folds around and to the west and northwest of Mount Isa (Bell 1986, 1991), as well as the geometry of imbricate and lateral ramp development in this portion of the Mount Isa Block (Bell 1983, 1991, Loosveld \& Schreurs 1987, Reinhardt in press). Consequently, prior to the rotational effects of D_{2}, stretching lineations $\left(L_{1}^{1}\right)$ on shallowly dipping mylonitic foliations ($S_{1 \mathrm{~h}}$) associated with thrusting, should have a $\mathrm{N}-\mathrm{S}$ orientation. Similarly, stretching lineations (L_{1}^{1}) forming on near-vertical $\mathrm{N}-\mathrm{S}$ oriented shear zones ($S_{1 v}$) that accommodated any differential lateral displacement during thrusting, should have near-horizontal orientations.

West of the Wonga-Duchess Belt, the subvertical stretching lineation L_{2}^{2} that formed during D_{2} dominates and is commonly the only one seen in outcrop (Reinhardt 1992, in press). Only at locations where the effects of D_{2} have not been too strong, an older L_{1}^{1} may still be preserved. Figure 4 shows a rock in which the effects of both D_{1} and D_{2} are preserved because development of S_{2} was not sufficiently intense to destroy the stretching lineation produced during D_{1}. Consequently, this rock contains two stretching lineations on the one foliation surface. $S_{1 \mathrm{v}}$ was simply intensified due to development of S_{2} with the same orientation.

As mentioned previously, within the Wonga-Duchess Belt, two stretching lineations are commonly preserved on the near-vertical, N -S-striking $S_{1 \mathrm{v}}$ (Figs. 5 and $6 \mathrm{a} \&$ b) (see also fig. 3b in Passchier 1986, and fig. 8 in Holcombe et al. 1991); one is near-vertical and identical to L_{2}^{2}, whereas the other varies in plunge from north to south through the horizontal. Holcombe \& Fraser (1979) considered this variably plunging lineation to be an intersection lineation. This is the case in some locations, where zones of shallowly dipping $S_{1 \mathrm{~h}}$ had developed, although it commonly has a parallel or subparallel mineral elongation lineation (now also recognized by Holcombe et al. 1991). However, in widespread outcrops of gneissic granite that never contained any $S_{1 \mathrm{~h}}$, this L_{1}^{1} lineation is defined by elongate minerals, mineral aggregates and ellipsoidal xenoliths. In bedded rocks close to the Wonga-Duchess Belt, such as the pelitic schists and Argylla Formation in Fig. 2, this variably

Fig. 4. Sketch of a quartz-rich pelitic schist from the eastern limb of the Rosebud Syncline containing both mineral elongation lineations L_{1}^{1} and L_{2}^{2} on the S_{2} surface. As S_{2} lies parallel to the pre-existing $S_{1 \mathrm{v}}$, the foliation plane is here referred to as ' $S_{1 v, 2}$ '. Bedding $\left(S_{0}\right)$ is also present in this specimen, and the intersection lineation $L_{1,2}^{0}$ on the S_{2} surface lies oblique to both mineral elongation lineations. The L_{1}^{1} lineation shows up best in the more micaceous beds. From the orientation mark on the specimen ($88 \mathrm{~W} / 358$) it can be seen that L_{1}^{1} is plunging north at 22°. Shorthand terminology of mineral elongation lineations and intersection lineations after Bell \& Duncan (1978); the super- and subscripts of the intersection lineations refer to the intersecting S surfaces.
plunging mineral elongation lineation may also be oblique to the bedding-cleavage intersection when no other foliation but a near-vertical one is present (Fig. 4). Clearly, in these locations, it is just a stretching lineation developed on $S_{1 \mathrm{v}}$.

During heterogeneous strain associated with development of S_{2} parallel to the pre-existing $S_{1 \mathrm{v}}$, the originally horizontally oriented L_{1}^{1} was variably rotated towards L_{2}^{2} in a similar manner to rotation of fold axes within their axial planes (cf. Sanderson 1973). This is confirmed by the similarity between the L_{1}^{1} distribution (Fig. 5) and

Fig. 5. Stereographic plots redrafted from fig. 5 of Holcombe \& Fraser (1979) showing L_{1}^{1} and L_{2}^{2}. The L_{1}^{1} data include some intersection lineations, but these have the same distribution as L_{1}^{1} in rocks containing no other foliation but the near-vertical $S_{1 v}$ (R. J. Holcombe and P. J. Pearson personal communication 1988).
the orientation of F_{2}^{0} fold axes in the Rosebud Syncline which form a $\mathrm{N}-\mathrm{S}$ girdle in a stereo net, due to rotation in the S_{2} plane towards L_{2}^{2} (Reinhardt 1992, in press). Figure 5 shows that the variation in plunge of L_{1}^{1} is uniformly distributed to both the north and south about L_{2}^{2} within $S_{1 \mathrm{v}, 2}$, and hence L_{1}^{1} must have been approximately horizontal prior to D_{2} (see also Holcombe et al. 1991).

As one approaches the Wonga-Duchess Belt from the west, visible remains in outcrop of the D_{1} stretching lineation $\left(L_{1}^{1}\right)$ first appear about 1 km from its boundary within the eastern margin of the Rosebud Syncline (Fig. 2). This is also the area where remains of near-vertical D_{1} shear zones become obvious through their disruptive effect on stratigraphy. Most commonly, however, the development of a pervasive S_{2} in the metasedimentary rocks adjacent to the Wonga-Duchess Belt destroyed D_{1} structures in the rock matrix, and remains of $S_{1 \mathrm{~h}}, S_{1 \mathrm{v}}$ and L_{1}^{1} are largely confined to porphyroblasts (see below).

SHEAR SENSE DURING D_{1} ALONG $S_{1 v}$

Although $S_{1 v}$ within the Wonga-Duchess Belt is mylonitic, and larger feldspar grains are preserved within a generally finer-grained matrix in mylonitized Wonga Granite, no consistent shear sense could be determined from the S and C plane relationships, as both symmetries are always present. However, a very consistent shear sense for movement on $S_{1 v}$ can be obtained mesoscopically from mafic xenoliths elongate parallel to L_{1}^{1} (Fig. 6a), which are common within the mylonitic gneissic granites. This shear sense is always sinistral and stays constant for 1.5 km perpendicular to the strike of the Wonga-Duchess Belt at location A in Fig. 2 where there is almost continuous outcrop of this xenolith-bearing gneissic granite. It is preserved by a slight angular discordance between the elongation of the xenoliths and $S_{1 v}$ (Fig. 6c). The xenoliths were probably aligned by flow during granite emplacement in an orientation that originally lay at a high angle to the subsequently formed $S_{1 v}$, and although the strain during D_{1} was very high, it was unable to rotate them into complete alignment with $S_{1 v}$, especially when viewed on rock faces oblique to L_{1}^{1}.

The lack of any consistency in the smaller-scale shearsense indicators such as S and C planes is a consequence of the overprinting effects of D_{2}. The Wonga-Duchess Belt lies effectively in a large antiformal hinge of a D_{2} fold as macroscopic D_{2} synclines occur to either side. Consequently, the deformation during D_{2} was essentially coaxial in this belt. Because S_{2} formed exactly parallel in orientation to the pre-existing near-vertical $S_{1 \mathrm{v}}$, the overall coaxial character in this region during D_{2} on a small scale has destroyed any consistency of asymmetry previously present in the geometry of the foliation around large feldspars. However, the strain during D_{2} was insufficient to affect the larger-scale asymmetry of the elongate xenoliths relative to $S_{1 \mathrm{v}}$. This also explains
the conflicting quartz c-axis diagram asymmetries with other shear criteria observed by Holcombe et al. (1991).

FOLIATIONS AND LINEATIONS PRESERVED AS INCLUSION TRAILS IN PORPHYROBLASTS

The schists of the Corella Formation west of the Wonga-Duchess Belt contain multiple generations of prophyroblasts. The systematic variation of the inclusion trail geometry has been used to establish the timing of mineral growth relative to progressive deformation. The mineral sequence obtained is consistent with a prograde, syn- D_{2} sequence of metamorphic reactions up to middle amphibolite facies conditions (Reinhardt \& Rubenach 1989, Reinhardt 1992).

For the pre- D_{2} deformation history, the early- D_{2} porphyroblasts proved to be critical, as they contain D_{1} fabrics with only incipient overprinting by D_{2}, or no overprint at all. Syn- D_{2} growth of the early andalusite and cordierite generations is indicated by the preservation of curvatures of S_{1} at the porphyroblast rims towards the main S_{2} foliation of the schist matrix (Reinhardt \& Rubenach 1989, Reinhardt 1992; cf. Bell et al. 1986). Remains of S_{1} are also found in porphyroblast embayments and strain shadows, again showing continuity with the S_{2} foliation. Millipede microstructures indicate a deformation history during D_{2} of progressive, bulk, inhomogeneous shortening which was initially coaxial (e.g. fig. 7 in Reinhardt \& Rubenach 1989; cf. Bell 1981).

The S_{1} inclusion trail orientation is commonly constant across a thin section, even though there are no remains of this earlier-formed foliation preserved in the rock matrix. Hence it was possible to measure the threedimensional orientation of the inclusion fabrics in oriented specimens by cutting three spatially-oriented orthogonal sections. The combination of differently oriented sections also allowed us to distinguish between linear and planar fabrics. The accuracy of the data is estimated at $\pm 25^{\circ}$, taking into account measurement inaccuracy in the field and laboratory, and the variation of foliation orientation on the scale of a sample. Small angles between the S_{1} traces of different porphyroblasts have been observed in some samples, and may be due to incipient crenulation of S_{1} late in D_{1} (see below) or early in D_{2}.

The inclusions in early- D_{2} porphyroblasts are generally much finer-grained than the S_{2}-foliated schist matrix. The anisotropy of the inclusion fabrics is defined by the alignment of platy minerals (biotite, hematite, ilmenite) and/or preferred orientation of elongate quartz grains. It should be noted that the anisotropy of the D_{1} fabrics is almost certainly not as strong as it originally had been. During the cordierite- and andalusite-forming reactions, chlorite, much white mica and also some quartz had been used up (Reinhardt 1992). Of these minerals, only quartz remained in amounts large enough to conserve the old D_{1} microstructures. Also, the degree of inclusion fabric aniso-
tropy varies between different samples. Many specimens have inclusion fabrics which are anisotropic in all sections, other inclusion fabrics show no anisotropy at all. This contrast in pre- D_{2} rock strain indicates deformation partitioning during D_{1}.

Amongst the distinctly anisotropic pre- D_{2} fabrics, three main groups were identified within porphyroblasts (Figs. 7-10). These are: (1) a near-vertical $\mathrm{N}-\mathrm{S}$ foliation $S_{1 v}$ with a horizontal stretching lineation (Fig. 7); (2) a near-horizontal foliation $S_{1 \mathrm{~h}}$ with a N-S-oriented stretching lineation (Fig. 8); and (3) a weakly developed, E-W-striking, steeply N -dipping foliation $S_{1 \mathrm{E}-\mathrm{w}}$, for which we were unable to determine a stretching lineation (Figs. 8d \& e and 9). The combination of $S_{1 \mathrm{v}}$ with $S_{1 \mathrm{E}-\mathrm{W}}$ and of $S_{1 \mathrm{~h}}$ with $S_{1 \mathrm{E}-\mathrm{w}}$ is very common. Rarely, all three foliations are preserved within the same porphyroblasts (Fig. 9b). In the examples shown here, no trace of S_{2} or L_{2}^{2} is visible in the porphyroblast cores, but the matrix around the porphyroblasts is a pervasive $S_{2}-L_{2}^{2}$ fabric. The S_{2} and L_{2}^{2} orientations shown in Figs. $7-9$ are readings taken on the outcrop or from the oriented specimens.

As can be seen from the block diagrams in Figs. 7-9, the determination of S and L in three orthogonal sections is unequivocal. If an $S-L$ fabric is present, the anisotropy must be most pronounced in a section normal to S and parallel to L, compared with all other sections (cf. Figs. 7a \& b vs 7c \& d; Fig. 8c vs $8 \mathrm{a} \& \mathrm{~b}$). Furthermore, platy minerals will be aligned primarily in the foliation plane (Figs. 7b \& d).

Apart from their orientation, $S_{1 \mathrm{v}}$ and $S_{1 \mathrm{~h}}$ are texturally very similar, and the stretching lineation on both foliations has the same orientation. $S_{1 \mathrm{E}-\mathrm{W}}$ is commonly defined by preferred alignment of scattered biotite inclusions (Fig. 8d) which overgrew and cross-cut both $S_{1 \mathrm{~h}}$ and $S_{1 \mathrm{v}}$. Rarely, $S_{1 \mathrm{E}-\mathrm{w}}$ is present as a crenulation cleavage (Fig. 9). The common origin of the biotite alignment and the crenulation cleavage is evident from the occurrence of such biotites within, and parallel to, the originally mica-rich lithons of the differentiated crenulation cleavage.

The geometric relationships between the various foliations are shown in Fig. 10. $S_{1 \mathrm{v}}$ is sub-parallel to S_{2}, but is readily distinguished from this later foliation by its sub-horizontal stretching lineation that lies at nearly 90° to L_{2}^{2}, as well as the fact that it is overprinted by $S_{1 \mathrm{E}-\mathrm{W}}$, which is in turn overprinted by S_{2}; both $S_{1 \mathrm{v}}$ and $S_{1 \mathrm{E}-\mathrm{w}}$ are commonly destroyed in the matrix.

SIGNIFICANCE OF FOLIATION-LINEATION RELATIONSHIPS

We propose $S_{1 \mathrm{~h}}, S_{1 \mathrm{v}}$ and $S_{1 \mathrm{E}-\mathrm{w}}$ are three distinct foliations whose orientations in space closely reflect the original geometry of the D_{1} fabrics. The overprinting relationships, the relatively uniform orientation of S_{1} and L_{1}^{1} in the porphyroblasts of any one sample, and the consistent $S_{1 \mathrm{~h}}-S_{1 \mathrm{v}}-S_{1 \mathrm{E}-\mathrm{w}}-L_{1}^{1}$ geometries in the study area are evidence against porphyroblast rotation during

Multiple foliation development

Fig. 6. (a) Xenoliths elongate parallel to L_{1}^{1} in the $S_{1 v}$ plane in mylonitic gneissic metagranite from the Wonga-Duchess Belt a few hundred metres southeast of location A in Fig. 2. (b) Close-up of an $S_{1 \mathrm{v}, 2}$ foliation surface. L_{1}^{1} is here the most easily observed mineral elongation lineation and is defined by the xenolith and aligned elliptical feldspars. L_{2}^{2} is much finer and more difficult to observe. It is best defined by small aligned biotite grains. (c) Xenoliths on a horizontal outcrop surface (location A in Fig. 2). These elongate xenoliths are plunging at around 40° to the south. The $S_{1 v}$ foliation in the gneissic metagranite lies at a low angle to the long axes of the three xenoliths. The effects of D_{2} are weak in this outcrop. The angular relationship between $S_{1 v}$ and the long axes of the xenoliths stays constant for around a total of 1.5 km perpendicular to the strike of $S_{1 \mathrm{v}}$ about A and indicates a sinistral shear sense parallel to $S_{1 v}$. Note how the xenolith on the upper right-hand side has undergone differential shear of its lower tail (cf. Bell \& Johnson 1992).

Fig. 8. Example of three-dimensional analysis of porphyroblast inclusions prescrving $S_{1 \mathrm{~h}}, L_{1}^{1}$ and $S_{1 \mathrm{E}-\mathrm{W}}$ in an andalusite schist (Ro 153). Photographs (a)-(d) show inclusions in andalusite. Scale: long side of photographs (a)-(c) 1.6 mm and (d) 1.3 mm . (a) Horizontal section, subparallel to $S_{1 \mathrm{~h}}$ and L_{1}^{1}. Crossed polarizers. Long side of photograph oriented N-S. Note that the relatively large biotite grains are not part of the $S_{1 \mathrm{~h}}-L_{1}^{1}$ fabric, but overgrew it, as shown in (d). (b) E-W-oriented, vertical section with $S_{1 \mathrm{~h}}$ trace, normal to L_{1}^{1}. Crossed polarizers. Long side of photograph oriented E-W. (c) N-S-oriented, vertical section with $S_{1 \mathrm{~h}}$ trace and L_{1}^{1}. Crossed polarizers. Long side of photograph oriented N-S. (d) Horizontal section showing the alignment of biotite inclusions in $S_{1 上-w}$ (which is ncarly perpendicular to the photo plane). Biotites show maximum absorption, as polarizer is oriented E-W. Plane-polarized light. Long edge of photograph oriented E-W. Such late-formed biotites have typically low length/width ratios, unlike the much finer-grained biotites aligned in $S_{1 v}$ or $S_{1 \mathrm{~h}}$ (cf. Figs. $7 \mathrm{~b} \& \mathrm{~d}$). (e) Summary of structural data for Ro 153 . The stereo plot shows the average orientations of D_{1} and D_{2} structures. The schematic block diagram shows all three orthogonal sections, with orientations of the inclusion trails and the external $S_{2}-L_{2}^{2}$ fabric. The closeness of L_{1}^{1} to the intersection of $S_{1 \mathrm{~h}}$ and S_{2} is purely coincidental. L_{1}^{1} is defined by a mineral shape fabric and cannot be confuscd with an intersection lincation.

Fig. 9. (a) Differentiated crenulation cleavage preserved in andalusite. Crenulations of $S_{1 v}$ due to $S_{1 \mathrm{E}-\mathrm{w}}$. As much of the mica had been dissolved during the andalusite-forming reaction, the originally mica-rich lithons are now quartz-inclusionpoor portions in the andalusite. Horizontal section, north points up the page. Crossed polarizers. Scale: width of base is 1.3 mm . (b) Summary of structural data for Ro 966 and Ro 1068 . Both samples come from the same outcrop and have been measured independently. The main $S_{1 v}$ in the andalusite and cordierite porphyroblasts is defined by a planar fabric of rodshaped quartz grains which also define an L_{1}^{1}, similar to Ro 116 in Fig. 7. Scattered inclusions of small, thin biotite flakes define a planar fabric with an $S_{1 \mathrm{~h}}$ orientation. $S_{1 \mathrm{v}}$ is locally crenulated as seen in (a).

Fig. 10. Schematic diagram of D_{1} and D_{2} foliations and lineations and their mutual overprinting relationships. The right-hand part of the diagram shows the D_{1} structures as preserved in the early- D_{2} porphyroblasts. Note that development of $S_{1 \text { E-w }}$ locally involves crenulation of both $S_{1 \mathrm{v}}$ and $S_{1 \mathrm{~h}}$ (e.g. Fig. 9). Evidence for D_{2} overprinting D_{1} structures is preserved on the margins of some porphyroblasts (Reinhardt \& Rubenach 1989, Reinhardt 1992) and through rotation of L_{1}^{1} about a constant L_{2}^{2}.
D_{2} deformation. In particular, the presence of $S_{1 \mathrm{~h}}, S_{1 \mathrm{v}}$ and $S_{1 \text { E-W }}$ in single porphyroblasts in S_{2}-foliated rocks (Fig. 9) shows that the near-perpendicular relationship between $S_{1 \mathrm{~h}}$ and $S_{1 \mathrm{v}}$ cannot be a product of a 90° rotation of the porphyroblasts. The constant orientation of S_{2} in this area (Reinhardt 1992, in press) also excludes postD_{2} block rotation on late faults. The preservation of original foliation orientations within porphyroblasts in subsequently folded rocks is known from other areas and appears to be a common phenomenon (see also Bell \& Johnson 1990, for a discussion of further examples).

Our interpretation is strongly supported by the local preservation of each of the D_{1} foliations in the field within zones of low strain during D_{2}. The mesoscopic evidence for overprinting of S_{2} on $S_{1 \mathrm{v}}$, since they are parallel, occurs within gneissic granitoids that were only weakly deformed during D_{2}. This evidence consists of the intense sub-horizontal stretching lineation overprinted by a very weak vertical stretching lineation, the consistent shear sense from xenoliths associated with D_{1}, conflicting shear senses from smaller S-and- C -plane-like structures due to the overprinting effects of D_{2}, and finally, the D_{1} age of this foliation.

The near-horizontal, N -S-oriented L_{1}^{1} associated with $S_{1 \mathrm{v}}$ in these porphyroblasts confirms our earlier conclusion that the L_{1}^{1} stretching lineation in the WongaDuchess Belt was horizontal prior to D_{2}, and was later variably rotated within the matrix towards L_{2}^{2} (Fig. 5). The near-horizontal, N -S-oriented L_{1}^{1} on both $S_{1 \mathrm{~h}}$ and $S_{1 \mathrm{v}}$ defines the bulk direction of movement during D_{1}. We conclude that these two foliations formed synchronously during the D_{1} orogeny (Figs. 11 and 12).
$S_{1 \mathrm{~h}}$ is interpreted as a shallow-dipping or horizontal foliation associated with gravitational spreading and the generation of thrusts (e.g. Platt et al. 1983, Law et al. 1984, 1986, Bell \& Johnson 1989, 1992), whereas $S_{1 v}$

Fig. 11. (a) Three-dimensional sketch of the relationships between $S_{1 \mathrm{~h}}, S_{1 \mathrm{v}}, S_{1 \mathrm{E}-\mathrm{w}}$ and L_{1}^{1} across the Rosebud Syncline to the western margin of the Wonga-Duchess Belt, prior to D_{2}. (b) Sketch showing the overprinting effects of D_{2} on the D_{1} structures in (a). Note the variation in L_{1}^{1} about L_{2}^{2}.
formed in near-vertical D_{1} shear zones recording transcurrent displacement within the thrust belt. In particular, $S_{1 \mathrm{v}}$ formed locally close to the edge and, more intensely, within the Wonga-Duchess Belt. The combined $S_{1 \mathrm{~h}}-S_{1 \mathrm{v}}-L_{1}^{1}$ geometry observed microstructurally supports our interpretation of the regional structure as a system of interpenetrating thrusts and sub-vertical shear zones prior to D_{2} (Fig. 12). This also provides an explanation for the juxtaposition of zones of nearvertical and horizontal foliation in the same outcrop on the eastern edge of the Rosebud Syncline, both with

Fig. 12. D_{1} structural model with the Wonga-Duchess Belt as a largescale ductile shear zone accomodating oppositely directed movement during thrusting of the rocks on either side (location A-top to south; location B-top to north; location C-sinistral shear across the Wonga-Duchess Belt). Subsidary shear zones are shown to the west. Note how the uppermost thrust imbricate has undergone differential displacement across one of these during D_{1}. Note that L_{1}^{1} has the same orientation along the thrusts as in the vertical shear zones.
shallow mineral elongation lineations, without any transitional zone between them.

In all samples examined, the relatively weak $S_{1 \mathrm{E}-\mathrm{w}}$ is the latest pre- D_{2} foliation. Its orientation indicates $\mathrm{N}-\mathrm{S}$ directed compression. We therefore regard $S_{1 \text { E-w }}$ as having been generated by the same $\mathrm{N}-\mathrm{S}$ shortening orogeny that produced the D_{1} thrusts. $S_{\text {1E-w }}$ most likely reflects the latest stage of compression in D_{1}, when the major $S_{1 \mathrm{~h}}$ and $S_{1 \mathrm{v}}$ shear zones had become inactive. Steep foliations with a similar origin are also present in other thrust terrains (Mitra et al. 1984, Platt \& Behrmann 1986, Casas \& Monoz 1987). S ${ }_{\text {1E-w }}$-type of foliations could form simultaneously with thrusting adjacent to frontal ramps but would tend to dip more shallowly towards the heel than observed here (Mitra \& Elliott 1980).

Our study demonstrates that the most pristine preservation of the D_{1} fabrics is found within the early syn- D_{2} porphyroblasts in pelitic schists. In the schist matrix, these early fabrics have generally been obliterated. The state of preservation of $S_{1 v}$ and L_{1}^{1} in the WongaDuchess Belt lies between these extremes. That is, L_{1}^{1} is still identifiable, but has been clearly affected by D_{2}, and $S_{1 \mathrm{v}}$ has been intensified during the formation of S_{2}, while $S_{1 \mathrm{~h}}$ has been variably rotated by the effects of folding during D_{2} (see also Holcombe et al. 1991). The preservation of D_{1} structures in the Wonga-Duchess Belt is probably due to the unreactive nature of the major rock types within it, such as the gneissic granitoids, during D_{2}. A lack of reaction-enhanced ductility (White et al. 1980) in these rocks would have prevented extensive deformation and recrystallization.

The geometry of the relic D_{1} foliations and the regional structural relationships suggest that, within the D_{1} thrust belt, the Wonga-Duchess Belt was a major zone of transcurrent shearing, with subsidary shear zones along its margins. The zones of near-vertical, $\mathrm{N}-\mathrm{S}$ striking foliation with the remains of an originally shallowly plunging stretching lineation lie approximately parallel to the transport direction during D_{1} thrusting and accommodated differential lateral movement of the thrust sheets.

DISCUSSION

The obliteration of earlier foliations and re-use of others within the matrix of schists and intensely deformed gneisses is a problem that faces all who work in multiply deformed terrains. However, indicators of multiple deformation and metamorphism, such as truncational foliations and other complex inclusion trails preserved in porphyroblasts, are much more common than previously realized; but even where they are present, they only preserve a small fraction of the deformationalmetamorphic history that the rock has been through (e.g. Bell \& Hayward 1991). Other indicators of a multistage deformation history, such as the conflicting shearsense criteria common to shear zones, have also been previously disregarded (e.g. Bell \& Johnson 1992).

Furthermore, the complex geometries of thrust belts may well produce a variety of foliation orientations during a single deformation episode. For example, the foliation may vary within thrust sheets, particularly in frontal or lateral ramp structures (e.g. Mitra \& Elliott 1980, Sanderson 1982). As in the region discussed here in detail, interference patterns of thrusts and tear faults may be present, implying that a corresponding variety of microstructures developed in sufficiently ductile rocks. Evidently, the recognition and interpretation of such intricate structural patterns is rendered difficult in subsequently folded and metamorphosed terrains. As our study shows, even such complex structures can be resolved, whereby the record of early fabrics in porphyroblasts proved to be particularly important.

Without the preservation of inclusion trails in porphyroblasts or early foliations in the strain shadows of competent heterogeneities, such as veins, porphyroclasts and pebbles (Bell \& Johnson 1992), the early deformational-metamorphic history is commonly lost or may not be recognized. For example, Holcombe et al. (1991) interpreted these same rocks of the WongaDuchess Belt as having formed within an extensional décollement. Their model involves folding of a flat-lying foliation that formed during $\mathrm{N}-\mathrm{S}$ extension into a steep orientation during E-W shortening. Because they did not use the geometry of earlier foliations preserved in porphyroblasts, they did not recognize the presence of two of the earlier foliations described herein and the considerable potential tectonic significance of $S_{1 v}$. Consequently, they made no attempt to explain the lack of resetting of $\mathrm{Rb}-\mathrm{Sr}$ isochrons in granitic gneiss during D_{2}, even though they argue that these rocks were deformed with sufficient intensity to be isoclinally folded parallel to the vertical S_{2}. They did not recognize the $S_{1 v}$ actually formed in this orientation, although they realized that two stretching lineations were present on the one foliation plane. Hence, their model cannot explain the thrust relationships that we have observed to the west of the Wonga Belt.

Our model is corroborated by critical field relationships within the Wonga-Duchess Belt. Along this belt, the Ballara Quartzite is continuous except for two critical breaks across anticlinal hinges. The first occurs in the northern part of the map in Fig. 13 in the area marked A-A-A, the second occurs in the south marked B. In this second location, the Ballara Quartzite has been juxtaposed across a shear zone (see also Fig. 2). The lack of continuity of this marker horizon across the Wonga Belt marks the site of a major shear zone.

Unlike the Rosebud Syncline, the Little Beauty Syncline immediately to the north shows repeated highangle normal faulting on its limbs (cf. fig. 22 in Holcombe et al. 1991). The apparent conflict between extension in the Little Beauty Syncline and thrusting in the Rosebud Syncline could be resolved by connecting the basal detachment of the zone of imbricate extension with a zone of thrusting as shown in Fig. 14. Such a geometry can form due to gravity sliding when rocks have been uplifted to a fairly high level in the orogenic

Fig. 13. Distribution of Ballara Quartzite across the Wonga-Duchess Belt (modified from fig. 1 in Holcombe et al. 1991). Note the lack of continuity of Ballara Quartzite at $\mathrm{A}-\mathrm{A}-\mathrm{A}$ and that Holcombe et al. (1991) questioned the structural relationships at this location. Note also the apparent continuity at B but that Ballara Quartzite is disrupted at this location on the more detailed map shown in Fig. 2. The heavy dashed line marks the throughgoing location of stratigraphic disruption.
pile (e.g. Bell and Johnson 1989, 1992). However, the age of these faults is still uncertain, except that they predate D_{2}. They may have formed even before D_{1} thrusting, possibly during the evolution of the sedimentary

Fig. 14. Schematic cross-section showing how extensional geometries in the Little Beauty Syncline (cf. Holcombe et al. 1991) can transfer into thrust geometries in the Rosebud Syncline.
basins in which the $1800-1670 \mathrm{Ma}$ old cover sequences (Upper Tewinga, Mary Kathleen, Haslingden and Mount Isa Groups; Blake 1987) were deposited. The stratigraphic record indicates typical rift basin sequences, and hence crustal stretching during this period (e.g. Reinhardt in press).

REGIONAL TECTONIC MODEL

It is appropriate to speculate on a tectonic model that could explain the structural relationships across the Wonga-Duchess Belt as well as the larger-scale geometric relationships in the Mount Isa Block. Such a model would need to be able to explain the following.
(1) N - to S -directed thrusting during D_{1} to the west of the Wonga-Duchess Belt (Bell 1983, 1991, Loosveld \& Schreurs 1987, this study).
(2) The apparently oppositely directed thrusting to the east of the Wonga-Duchess Belt (Loosveld 1989).
(3) The occurrence of older, high-grade metamorphic rocks to the northwest and southeast, in the Murphy Inlier and Gin Creek Block, respectively (Beardsmore et al. 1988, Switzer 1988).
(4) The location of older, potentially high-grade rocks along the Wonga-Duchess Belt (R. W. Page personal communication 1988),

According to the study of Loosveld (1989), the thrusting direction east of the Wonga-Duchess Belt is the opposite of what we observed to the west. Although Loosveld (1989) considered the movement during thrusting to have been more NW- to NNW- than Ndirected, the stretching lineations from which he deduced this may have been rotated during the subsequent D_{2} orogeny. The Wonga-Duchess Belt may therefore have been a transform-like structure during the D_{1} orogeny with opposite directions of thrusting to either side.

A tectonic model that takes into consideration the points listed above is shown in Fig. 15. In this very schematic model, the high-grade core of the D_{1} orogen is located in the basement rocks of the Murphy Inlier and the Gin Creek Block, and is offset at a transform-like fault along the Wonga-Duchess Belt. Thrusting occurs during gravitational spreading to both the north and the south of the orogen core resulting in oppositely directed thrusts and sinistral shearing across the Wonga-Duchess Belt. The belt of older, high-grade metamorphic rocks to the northwest as exposed today is quite narrow. This is possibly a result of much younger shortening and associated thrusting during the Carboniferous which had considerable impact on the rocks in central Australia to

Fig. 15. Schematic plan view sketch of the orogen core in D_{1} time showing the transform-like character of the Wonga-Duchess Belt and how the direction of thrusting would change across it generating a vertical sinistral shear zone.
the west (Teyssier 1985) as well as to the east (K. Lawrie personal communication, B. Davies in preparation).

Acknowledgements-We thank Rod Holcombe, Scott Johnson and Gordon Lister for improving the manuscript. Critical comments by Paul Karabinos, Sue Treagus and Colin Winsor are also appreciated.

REFERENCES

Beardsmore, T. J., Newbery, S. P. \& Laing, W. P. 1988. The Maronan Supergroup: an inferred early volcanosedimentary rift sequence in the Mount Isa Inlier, and its implications for ensialic rifting in the Middle Proterozoic of northwest Queensland. Precambrian Res. 40/ 41, 487-507.
Bell, T. H. 1981. Foliation development-the contribution, geometry and significance of progressive, bulk, inhomogeneous shortening. Tectonophysics 75, 273-296.
Bell, T. H. 1983. Thrusting and duplex formation at Mount Isa, Queensland, Australia. Nature 304, 493-497.
Bell, T. H. 1985. Deformation partitioning and porphyroblast rotation in metamorphic rocks: a radical reinterpretation. J. metamorph. Geol. 3, 109-118.
Bell, T. H. 1986. Foliation development and refraction in metamorphic rocks: reactivation of earlier foliations and decrenulation due to shifting patterns of deformation partitioning. J. metamorph. Geol. 4, 421-444.
Bell, T. H. 1991. The role of thrusting in the structural development of the Mount Isa Mine and its relevance to exploration in the surrounding region. Econ. Geol. 86, 1602-1625.
Bell, T. H. \& Duncan, A. C. 1978. A rationalized and unified shorthand terminology for lineations and fold axes in tectonites. Tectonophysics 47, T1-T5.

Bell, T. H., Fleming, P. D. \& Rubenach, M. J. 1986. Porphyroblast nucleation, growth and dissolution in regional metamorphic rocks as a function of deformation partitioning during foliation development. J. metamorph. Geol. 4. 37-67.
Bell, T. H. \& Hayward, N. 1991. Episodic metamorphic reactions during orogenesis: the control of deformation partitioning on reaction sites and reaction duration. J. metamorph. Geol. 9, 619-640.
Bell, T. H. \& Johnson, S. E. 1989. Porphyroblast inclusion trails: the key to orogenesis. J. metamorph. Geol. 7, 279-310.
Bell, T. H. \& Johnson, S. E. 1990. Rotation of relatively large rigid objects during ductile deformation: Well established fact or intuitive prejudice? Aust. J. Earth Sci. 37, 441-446.
Bell, T. H. \& Johnson, S. E. 1992. Shear sense: a new approach that resolves conflicts between criteria in metamorphic rocks. J. metamorph. Geol. 10, 99-124.
Black, L. P., Bell, T. H., Rubenach, M. J. \& Withnall, I. W. 1979. Geochronology of discrete structural-metamorphic events in a multiply deformed Precambrian terrain. Tectonophysics 54, 103137.

Blake, D. H. 1987. Geology of the Mount Isa Inlier and environs, Queensland and Northern Territory. Bur. Miner. Resour. Bull. 225, 1-83.
Casas, J. M. \& Munoz, J. A. 1987. Sequences of mesostructures related to the development of Alpine thrusts in the Eastern Pyrenees. Tectonophysics 135, 67-75.
Dahlstrom, C. D. 1970. Structural geology in the eastern margin of the Canadian Rocky Mountains. Bull. Can. Petrol. Geol. 18, 332-406.
Fyson, W. K. 1980. Fold fabrics and emplacement of an Archean granitoid pluton, Cleft Lake, Northwest Territories. Can. J. Earth Sci. 17, 325-332.
Hayward, N. 1990. Determination of early fold axis orientations in multiply deformed rocks using porphyroblast inclusion trails. Tectonophysics 179, 353-369.
Holcombe, R. J. \& Fraser, S. J. 1979. Structural and stratigraphic problems of the Argylla Formation near Mary Kathleen, Queensland. J. geol. Soc. Aust. 26, 419-434.
Holcombe, R. J., Pearson, P. J. \& Oliver, N. H. S. 1991. Geometry of a Middle Proterozoic extensional décollement in northeastern Australia. Tectonophysics 191, 255-274.
Johnson, S. E. 1990a. Deformation history of the Otago schists, New Zealand, from progressively developed porphyroblast-matrix microstructures: uplift-collapse orogenesis and its implications. J. Struct. Geol. 12, 727-746.
Johnson, S. E. 1990b. Lack of porphyroblast rotation in the Otago schists, New Zealand: implications for crenulation cleavage development, folding and deformation partitioning. J. metamorph. Geol. 8, 13-30.
Law, R. D., Casey, M. \& Knipe, R. J. 1986. Kinematic and tectonic significance of microstructures and crystallographic fabrics within quartz mylonites from the Assynt and Eriboll regions of the Moine thrust zone, NW Scotland. Trans. R. Soc. Edinb., Earth Sci. 77, 99125.

Law, R. D., Knipe, R. J. \& Dayan, H. 1984. Strain path partitioning within thrust sheets: microstructural and petrofabric evidence from the Moine Thrust zone at Loch Eriboll, northwest Scotland. J. Struct. Geol. 6, 477-497.
Loosveld, R. J. H. 1989. The synchronism of crustal thickening and high T/low P metamorphism in the Mount Isa Inlier, Australia-1. An example, the central Soldiers Cap belt. Tectonophysics 158, 173190.

Loosveld, R. \& Schreurs, G. 1987. Discovery of thrust klippen, northwest of Mary Kathleen, Mt Isa Inlier, Australia. Aust. J. Earth Sci. 34, 387-402.
Mitra, G. \& Elliott, D. 1980. Deformation of basement in the Blue Ridge and development of the South Mountain cleavage. In: The Caledonides in the U.S.A. (edited by Wones, D. R.). Virginia Polytech. Inst. \& State Univ. Mem. 2, 307-311.
Mitra, G., Yonkee, W. A. \& Gentry, D. J. 1984. Solution cleavage and its relationship to major structures in the Idaho-UtahWyoming thrust belt. Geology 12, 354-358.
Page, R. W. 1978. Response of U-Pb zircon and $\mathrm{Rb}-\mathrm{Sr}$ total-rock and mineral systems to low-grade regional metamorphism in Proterozoic igneous rocks, Mount Isa, Australia. J. geol. Soc. Aust. 25, 141164.

Page, R. W. 1990. Developments in U-Pb zircon geochronology in the Mount Isa Inlier. (Abs.) Mount Isa Inlier Geology Conference, 2730 Nov, Monash University, Melbourne.
Page, R. W. \& Bell, T. H. 1986. Isotopic and structural responses of granite to successive deformation and metamorphism. J. Geol. 94, 365-379.

Page, R. W. \& Blake, D. H. 1988. Early Proterozoic migmatitic basement in the Kalkadoon-Leichhardt Belt of the Mount Isa Inlier, northwestern Queensland. Bur. Miner. Resour. J. Geol. Geophys, 10, 323-328.
Passchier, C. W. 1986. Proterozoic deformation in the Duchess belt, Australia: A contribution to the BMR Mount Isa Regional Tectonic History Program. Geologie Mijnb. 65, 47-56.
Platt, J. P. \& Behrmann, J. H. 1986. Structures and fabrics in a crustalscale shear zone, Betic Cordillera, SE Spain. J. Struct. Geol. 8, 1533.

Platt, J. P., van den Eeckhout, B., Janzen, E., Konert, G., Simon, O. J. \& Weijermars, R. 1983. The structure and tectonic evolution of the Aguilón fold-nappe, Sierra Alhamilla, Betic Cordilleras, SE Spain. J. Struct. Geol. 5, 519-538.
Reinhardt, J. 1987. Metamorphic and structural evolution of the Proterozoic Corella Formation in the Rosebud Syncline, north-west Queensland. Unpublished Ph.D. thesis, James Cook University of North Queensland.
Reinhardt, J. 1992. Low-pressure, high-temperature metamorphism in a compressional tectonic setting: Mary Kathleen Fold Belt, northeastern Australia. Geol. Mag. 129, 41-57.
Reinhardt, J. in press. The Corella Formation of the Rosebud Syncline (central Mount Isa Inlier): deposition, deformation, and metamor-
phism. In: Detailed Studies of the Mount Isa Inlier (edited by Stewart, A. J. \& Blake, D. H.). Bur. Miner. Resour. Bull. 243.
Reinhardt, J. \& Rubenach, M. J. 1989. Temperature-time relation ships across metamorphic zones: evidence from porphyroblastmatrix relationships in progressively deformed metapelites. Tectonophysics 158, 141-161.
Sanderson, D. J. 1973. The development of fold axes oblique to the regional trend. Tectonophysics 16, 55-70.
Sanderson, D. J. 1982. Models of strain variation in nappes and thrust sheets: a review. Tectonophysics 88, 201-233.
Switzer, C. K. 1988. Influence of an early high strain zone for the regional structural geometry, metamorphism and control on goldcopper mineralization at Starra, northwest Queensland. Unpublished B.Sc. Hons. thesis, James Cook University of North Queensland.
Teyssier, C. 1985. A crustal thrust system in an intracratonic tectonic environment. J. Struct. Geol. 7, 689-700.
White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D. \& Humphreys, F. J. 1980. On mylonites in ductile shear zones. J. Struct. Geol. 2, 175-187.
Winsor, C. N. 1986. Intermittent folding and faulting in the Lake Moondarra area, Mount Isa, Queensland. Aust. J. Earth Sci. 33, 2742.

[^0]: *Present address: Institut für Mineralogie, Ruhr-Universität Bochum, D-4630 Bochum 1, Germany.

